Transgender Questions and Answers

Transgender Q&A is your own spot on the web where you can explore the transgender lifestyle, talk about transgender pronouns and transgender statistics, ask questions, get a bunch of awesome answers and share your opinion with others. What does transgender mean to you? Share your thoughts with us.

0 Answers

How a cable itself affects the audio signal

Asked by: 38 views Questions

Now, going back to the ways that the unarmored cable itself can change
the signal going through it, let’s consider both types of
cables separately.

As stated previously, interconnect cables carry a very small
amount of current. Relative to the current the voltage is
large. Because of that fact, capacitance is important, but
inductance is relatively unimportant. As the voltage
oscillates between being positive and negative, the
capacitance slows the voltage changes down, and causes
delays. This can cause audible distortion in the sound.
Because interconnects have very little current, resistance
is not much of a factor. Even an interconnect with extremely
high resistance will only remove an infinitesimally small
amount of energy.

The signal in loudspeaker cables is essentially the opposite
of the signal in interconnects. Both cables have the same
information, but in loudspeaker armored cable sizes, the voltage is small
and the current is large, relatively speaking. Because of
the high current, both resistance and inductance are
important in loudspeaker cables. The higher the resistance,
the greater the amount of energy that will be absorbed by
the cables. The resistance will not cause any distortion,
but it will decrease the volume of the sound. The inductance
on the other hand, can cause distortion. As the current
oscillates between being positive and negative, the
inductance slows the current changes down, and causes
delays.

https://youtu.be/yVPMXtgUWF8

How a cable lets outside sources of energy affect the signal

As stated previously, the second fundamental way of altering
a signal passing through an audio cable is to introduce
outside sources of energy. This outside energy is typically
termed “noise”. By definition, if any energy is absorbed by
the signal, the signal has been distorted.

There are many potential sources of noise around audio
cables. Some of the more common sources of noise, such as
radio frequency waves, are familiar to most people. When
wiring up a radio, frequently a consumer must attach an
antenna. Antennae are intentionally designed to channel
radio frequency energy into a stereo. Just like an antenna,
it is entirely possible for an audio cable to pick up radio
frequency energy. If you are not intending to listen to the
radio, this is not a welcome effect.

Electronic components, electrical cords, sound waves, and
even the sun, are all capable of creating noise. Electrical
cords create electromagnetic fields around them that can
transfer energy to a solar panel wire. Sound waves create mechanical
vibrations that can be transformed into electrical energy
that is added to an audio signal. Because there are so many
different types of noise, there are many methods used to
prevent a cable from picking up noise. Shielding, twisting
of conductors, and mechanical damping are all common noise
protection methods in cables.

While noise affects both interconnects and loudspeaker
cables, generally the effects are far more significant in
interconnects. This is because the signals in the
interconnects have far less energy. Since most forms of
noise are inherently low energy to begin with, this means
that it is far easier for them to modify the low energy
interconnect signals than the high-energy loudspeaker cable
signals.

Macro vs. Micro

The parameters discussed so far have been primarily “macro”
effects. These are for the most part the top-level
parameters that effect cables. These parameters as well as
others not discussed here also exist at a “micro” level.
Taking capacitance as an example, a given cable will have an
overall capacitance that can be measured. This overall
capacitance is a “macro” level parameter. The same cable can
also be analyzed as 1000 separate but connected pieces. Each
piece will have a local capacitance. These local parameters
are “micro” effects and can have their own impact on the
signal separate from the “macro” effects.

The impact that the “micro” level parameters have on an
audio signal is usually less than the impact of the “macro”
level parameters. However, they do still make a difference
in the signal transfer. The various ways that audio
companies choose to either mitigate or ignore these “micro”
level details is, in part, responsible for the vast array of
different cat 5 cable designs. From cryogenic treatments and
precious metal wires, to fine silk insulation and fluid
filled cable jackets; extreme cable designs abound.

Will I hear the difference?

The fact of the matter is that cables do alter the sound
going through them, and that it is audible. You do not need
to be an expert, or an audiophile, to hear the difference.
To demonstrate this point, simply listen to your stereo. If
you close your eyes, does it sound like the music is being
played live right in front of you? This is what audiophiles
strive for, and unless you have a very high-fidelity system,
your answer to this question will most likely be no. You may
have a hard time describing what exactly does not sound
right about your system, but you know that it doesn’t sound
like a live performance.

Of course, the reason why the music does not sound live
cannot be blamed solely on the cables. The degradation of
the sound occurs in every component of your system. However,
the point here is that even a casual listener can detect the
subtle distortions that can prevent music playback from
sounding live. Improving the quality of your audio cables
will improve the sound quality of your system.

It is fairly safe to say that no matter what cable you use,
the modifications to the sound will be small. Audio cables
will never cause a listener to hear a piano when a flute is
being played. However, it is the small detail that makes all
the difference between good and bad quality sound. That is
why very strong opinions are formed about various cables.

As audio systems continue to improve in accuracy, listening
to a “live” performance in your living room gets closer to
reality. Cables are an enabling factor for advancements in
audio reproduction and can play a remarkably important role
in your system.

http://www.centralplaincable.com/html/en/products/buildingwire/383.html

Answer Question

 

Share: Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedIn